Pages

Tuesday, 15 March 2011

Mathematizing The Lord Of The Rings

Fundamental entities

Set of parameters: P(θ) = {θ1, θ2, ..., θn} = Pθ

Set of constants: C(φ) = {φ1, φ2, ..., φn} = Cφ

Constitutional entities

Problem space: IP(x, y, z, t) = IP(x, y, z, t)(Piθ, Ckφ)

Solution space: IS(x, y, z, t) = IS(x, y, z, t)(Pjθ, Clφ)

Active entities

F(θ, φ): IP(x, y, z, t) --> IS(x, y, z, t)

E(x, y, z, t) = Ē

Game definition

Players

PF: Frodo Baggins / PS: Samwise Gamgee / PP: Peregrin Took / PM: Meriadoc Brandybuck / PG: Gandalf / PA: Aragorn / PL: Legolas / PI: Gimli / PB: Boromir / PR: Faramir / PD: Denethor / PS: Saruman / PZ: Sauron / PH: Gollum

Fixtures

CS: Shire / CB: Bree / CW: Weathertop / CR: Rivendell / CC: Caras Galadhon (Lothlorien) / CM: Moria / CO: Rohan / CH: Helm’s Deep / CG: Gondor / CL: Morgul Vale / CZ: Mordor / CU: Orodruin / CI: Isengard

Problem function

IP, Ē = IP(x, y, z, t, u)[({PF, PS}, {PR, PH}), ({PP, PM, PG, PA, PL, PI, PB, PD}, {PS, PZ})]

Solution function

IS, Ē = IP(x, y, z, t, u)(PF, CU)

As simple as that.


[caption id="" align="alignleft" width="240" caption="Making sense of Middle Earth"]Legoshire[/caption]

No comments:

Post a Comment