Set of parameters: P(θ) = {θ1, θ2, ..., θn} = Pθ
Set of constants: C(φ) = {φ1, φ2, ..., φn} = Cφ
Constitutional entities
Problem space: IP(x, y, z, t) = IP(x, y, z, t)(Piθ, Ckφ)
Solution space: IS(x, y, z, t) = IS(x, y, z, t)(Pjθ, Clφ)
Active entities
F(θ, φ): IP(x, y, z, t) --> IS(x, y, z, t)
E(x, y, z, t) = Ē
Game definition
Players
PF: Frodo Baggins / PS: Samwise Gamgee / PP: Peregrin Took / PM: Meriadoc Brandybuck / PG: Gandalf / PA: Aragorn / PL: Legolas / PI: Gimli / PB: Boromir / PR: Faramir / PD: Denethor / PS: Saruman / PZ: Sauron / PH: Gollum
Fixtures
CS: Shire / CB: Bree / CW: Weathertop / CR: Rivendell / CC: Caras Galadhon (Lothlorien) / CM: Moria / CO: Rohan / CH: Helm’s Deep / CG: Gondor / CL: Morgul Vale / CZ: Mordor / CU: Orodruin / CI: Isengard
Problem function
IP, Ē = IP(x, y, z, t, u)[({PF, PS}, {PR, PH}), ({PP, PM, PG, PA, PL, PI, PB, PD}, {PS, PZ})]
Solution function
IS, Ē = IP(x, y, z, t, u)(PF, CU)
As simple as that.
[caption id="" align="alignleft" width="240" caption="Making sense of Middle Earth"]
No comments:
Post a Comment